Superimpose a function.

Usage

stat_function(mapping = NULL, data = NULL, geom = "path", position = "identity", ..., fun, xlim = NULL, n = 101, args = list(), na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)

Arguments

mapping
Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data
The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot. A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify for which variables will be created. A function will be called with a single argument, the plot data. The return value must be a data.frame., and will be used as the layer data.
geom
The geometric object to use display the data
position
Position adjustment, either as a string, or the result of a call to a position adjustment function.
...
other arguments passed on to layer. These are often aesthetics, used to set an aesthetic to a fixed value, like color = "red" or size = 3. They may also be parameters to the paired geom/stat.
fun
function to use
xlim
Optionally, restrict the range of the function to this range.
n
number of points to interpolate along
args
list of additional arguments to pass to fun
na.rm
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.
show.legend
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders.

Description

Superimpose a function.

Aesthetics

stat_function understands the following aesthetics (required aesthetics are in bold):

  • y

Computed variables

x
x's along a grid

y
value of function evaluated at corresponding x

Examples

set.seed(1492) df <- data.frame( x = rnorm(100) ) x <- df$x base <- ggplot(df, aes(x)) + geom_density() base + stat_function(fun = dnorm, colour = "red")

base + stat_function(fun = dnorm, colour = "red", args = list(mean = 3))

# Plot functions without data # Examples adapted from Kohske Takahashi # Specify range of x-axis ggplot(data.frame(x = c(0, 2)), aes(x)) + stat_function(fun = exp, geom = "line")

# Plot a normal curve ggplot(data.frame(x = c(-5, 5)), aes(x)) + stat_function(fun = dnorm)

# To specify a different mean or sd, use the args parameter to supply new values ggplot(data.frame(x = c(-5, 5)), aes(x)) + stat_function(fun = dnorm, args = list(mean = 2, sd = .5))

# Two functions on the same plot f <- ggplot(data.frame(x = c(0, 10)), aes(x)) f + stat_function(fun = sin, colour = "red") + stat_function(fun = cos, colour = "blue")

# Using a custom function test <- function(x) {x ^ 2 + x + 20} f + stat_function(fun = test)